
A Note on Space-Filling Visualizations and Space-Filling Curves 
 

Martin Wattenberg, IBM Research 

 

ABSTRACT 

A recent line of treemap research has focused on layout 
algorithms that optimize properties such as stability, preservation 
of ordering information, and aspect ratio of rectangles. No ideal 
treemap layout algorithm has been found, and so it is natural to 
explore layouts that produce non-rectangular regions. This note 
describes a connection between space-filling visualizations and 
the mathematics of space-filling curves, and uses that connection 
to characterize a family of layout algorithms which produce 
nonrectangular regions but enjoy geometric continuity under 
changes to the data and legibility even for highly unbalanced 
trees. 

 
CR Categories and Subject Descriptors: Hierarchy 

Visualization 

1 INTRODUCTION 

 
Space-filling visualizations, such as treemaps [12], are a widely 

used type of information display. These techniques scale well, 
with the capacity to show thousands of items legibly. The key 
difference among various space-filling techniques is the method 
by which they partition the screen. 

At the core of a space-filling visualization is a layout function L 
that takes as an argument a list of k non-negative real numbers, 
(x1, x2, …, xk), and returns a corresponding partition of a rectangle 
into regions (r1, r2, …, rk), where Area(ri) is proportional to xi. 
Typically the regions are assumed to be disjoint or have zero-area 
intersection. For hierarchical data, one typically then divides the 
regions into subregions, based on an identical or similar layout 
function. 

Unfortunately, not all functions L make for good displays. In 
the case of treemaps, while many layout functions have been 
proposed [2,3,4,12,13,14,15], all suggested functions have 
drawbacks: [3] discusses various potential problems, such as lack 
of continuity of L or highly elongated shapes for the output 
regions. A natural question is whether these problems arise 
because treemaps are constrained to produce rectangular regions 
whose union is the unit square. For instance, in a treemap it is 
considered bad to have a rectangle that has a very high aspect 
ratio—yet to represent the list of numbers (999,1) a treemap must 
have an item whose aspect ratio is 1,000. While this may seem 
like a contrived example, it does arise in the real world; one case 
is in visualizing the highly unbalanced trees that are often 
produced by hierarchical agglomerative clustering. 

Given the intrinsic limitations of rectangular layouts, one might 
ask what might be gained by giving up the condition that regions 
be rectangular. Indeed, several nonrectangular space-filling 
visualizations have been developed, including quantum 
bubblemaps [3], the polygonal maps of Nguyen and Huang [11], 
and Voronoi Treemaps [1]. While these maps enjoy helpful visual 
attributes, their continuity properties are unclear. 

In this note we write down a list of natural but strong conditions 
for a layout function L, and ask whether it is possible to meet 
these goals by allowing nonrectangular--even nonconvex--
regions. Following an insight of Keim [8], we show that it is 
indeed possible, using a type of layout we term a jigsaw map due 
to the resemblance of its regions to jigsaw puzzle pieces, and we 

show examples of jigsaw maps applied to highly unbalanced trees 
that arise in bioinformatics.  

Although their practical value still needs to be evaluated, jigsaw 
maps serve a theoretical purpose as well: We prove a theorem that 
any layout algorithm that meets every property in our list of 
desirable attributes is essentially a jigsaw map, thus providing a 
complete characterization of such layout functions in terms of 
discrete space-filling curves.  

 

2 PERFECT LAYOUT FUNCTIONS 

2.1 Desirable layout properties 

 
The efficacy of a space-filling visualization depends on the 

layout function L. Experience with treemaps has uncovered a 
variety of desirable attributes for a layout function. In this section 
we describe these properties informally and discuss why they are 
important; in the next section we make them mathematically 
precise. 

The first treemap layout [12] was known as the “slice and dice” 
method, and in practice led to layouts with rectangles with 
extremely high aspect ratios. Such long, skinny rectangles are 
difficult to see and select, and subsequent work on treemap layout 
algorithms discussed new algorithms which produced rectangles 
with a more compact shape, that is, aspect ratios closer to 1. See 
for example the squarified layouts of [4] or the recursive “cluster” 
layout of the SmartMoney Map of the Market [15]. 

These new algorithms turn out to share some new drawbacks: 
as the sizes of items in the layout changed, the structure of the 
layout itself changes discontinuously. Since many treemaps are 
designed to show time-varying data, such instability can be a 
significant distraction. In addition, since both the cluster and 
squarified algorithms involve a step which sorts elements by size, 
any underlying ordering of the items is destroyed.  

As items are added or removed from the input list, the layout 
can change dramatically. Because the structure of treemap data 
often changes over time as well (with, for example, companies in 
the stock market splitting and merging) it would be nice if, when 
an item splits into two smaller items of the same total size as the 
original, that the rest of the layout shouldn’t be affected. 

To sum up, four desirable properties of a layout function are 
nicely shaped regions, stability with regard to changing leaf 
values, stability with regard to changing tree structure, and 
preservation of ordering information.  We now make these 
desiderata precise. 

2.2 Discretizing the Problem 

 
Layout functions are often defined in terms of real numbers. In 

what follows we consider instead a discrete version of the 
problem, defining layouts that partition a square mesh of pixels 
with integer coordinates. To be precise, we define a layout 
function L to be a function whose domain is sequences (x1, x2, …, 
xk), of integers whose sum is n2, and whose range is sequences of 
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disjoint connected subsets (r1, r2, …, rk) of the mesh (1,2,…,n) x 
(1,2,..,n), such that |ri|= xi. For simplicity we have defined the 
layout function on a square mesh, but as discussed below we do 
not lose any generality by doing so. In practice it is unlikely that 
the item sizes xi will just happen to add up to n2, so the values will 
need to be normalized appropriately, with care taken so that 
round-off errors do not accumulate. 

We shift to the discrete perspective partly because it simplifies 
the exposition and partly to more accurately model a computer 
screen made from individual pixels. Note that [3] discussed a 
similar “quantum” layout; there, the goal was to pack pictures into 
a readable grid. Since every space-filling algorithm must at least 
implicitly work this way in practice, even if only during the 
rasterization process, this is a reasonable perspective to take.  

 

2.3 Perfect layouts 

 
Based on the considerations described in the introduction, we 

can list four generally desirable properties for a layout function. In 
what follows, let L be a layout function and x=(x1, x2, …, xk) be an 
arbitrary input vector with L(x)=(r1,r2,…,rn). 

 
1. Stability:  Let y be any input vector of the same length as x, 
differing only at two positions, i and j, with xi=yi +1 and xj= yj -
1. Then corresponding regions in L(x) and L(y) should differ by 
at most two items. This may be viewed as a discrete version of 
a continuity condition, and says that the smallest possible 
change in inputs should yield the smallest possible change in 
outputs. 
 
2. Split Neutrality: Suppose y=(y1, y2, …, yk+1)  is an input 
vector such that for some j<=n we have xi=yi for i<j, xi=yi+1 for 
i>j+1, and xj=yi+yj+1. Let L(y)=(s1,s2,,..sn+1). Then we require 
ri=si for i<j, ri=si+1 for i>j+1, and rj=yj union yj+1. Informally, 
this says that structural changes are handled smoothly: if we 
have a set of items, and one of those items is replaced by 
(“splits into”) two items whose sum is the original one, then in 
the corresponding layouts, the region for the original item splits 
into two subregions, with no other region affected. 
 
3. Order Adjacency: Because order is often important, ri 
should be adjacent to ri+1 for each i<k.  
 
4. c-Locality: The diameter of a region ri should be bounded by 
a small constant c times the square root of the area of ri. In 
other words, layout regions should be relatively compact, rather 
than long and narrow, to aid in seeing and selecting regions. 
This is the analogue for nonrectangular shapes of the treemap 
criterion that aspect ratios should be close to 1. (Bederson et al, 
2002) 
 
Properties 1 and 2 ensure that small changes in the underlying 

data will lead to small changes in the corresponding layout. 
Property 1 has been discussed previously with regard to treemaps 
in [3]. Property 2 is necessary to discuss smooth change as items 
are inserted or deleted in the input lists. Property 3 requires some 
sense of sequence to be preserved. It is an interesting question to 
what extent these properties are redundant. It is fairly easy to see 
that split-neutrality and order-adjacency imply stability (using an 
argument similar to the proof of Theorem 2, below) but a more 
challenging question is whether stability and order adjacency 
imply some type of split-neutrality. 

Property 4 essentially says that the regions cannot be too long 
and skinny—one might think of this as an anti-gerrymandering 

provision. It is the analogue of the restrictions on aspect ratios that 
arise when discussing good treemap layouts. 

If a layout function satisfies all four properties, we call it 
perfect. (Here “perfect” is used in a mathematical sense of 
completely satisfying the list of properties; we make no claim that 
a perfect layout is the best way to present any particular data set.) 
No layout algorithm in the literature satisfies all four properties. 
Most layout algorithms currently used in treemaps (squarified, 
cluster, and strip [3]) are not continuous, for example. Squarified 
and cluster treemaps are not order-preserving and not split-
neutral, since they rearrange items by size. The very simple 
algorithm used in each level of a slice-and-dice layout does satisfy 
the first three properties but does not enjoy the c-locality property. 

In the introduction we discussed how the simple case of laying 
out two items with weights 1 and 999 with rectangles implies a 
high aspect ratio. Because of this simple obstacle (and others) to 
perfect rectangle-based layouts, one may ask whether any perfect 
layouts exist. The answer, as we now show, is yes. 

 

2.4 Space-filling curves and mesh indices 

 
To construct a perfect layout, we require the concept of a space-

filling curve. A space-filling curve is a continuous function that, 
roughly speaking, maps a one-dimensional space onto a higher 
dimensional space. Such curves have been used in computer 
science for many applications due their good clustering properties; 
see for example [7] and [9]. They were introduced in the context 
of information visualization by Keim [8] who proposed using 
these curves to help place related items near to each other in a 
pixel-oriented layout. (Keim’s work differs from this paper in that 
he considers positioning large numbers of single-pixel items, 
rather than items of many different sizes.) 

Keim uses a discrete version of a space-filling curve, which he 
terms a screen-filling curve. (Another term used in the literature is 
a mesh index.) We may define a screen-filling curve as a one-to-
one function h: (1, 2, …, n2)  (1, 2, …, n)x(1, 2, …, n) with the 
“continuity” property that h(i) and h(i+1) are adjacent.  

Many screen-filling curves are known that enjoy an additional 
strong locality property:  

 
Distance(h(i), h(j))  <  c|i-j|1/2  
 
for some small constant c. It is this locality condition which we 

use to construct layout functions that satisfy property 4. The 
classical Hilbert curve has c= 6 (see [10]) but better values are 
possible.  

 
Figure 1. Some examples of Hilbert Curves. 
 
The smallest known value of c, conjectured to be optimal, is 2, 

which holds for the so-called H-Curve [10]. (The H-Curve can be 
constructed for rectangles of arbitrary dimensions, as well as 
squares, which is why we have lost no generality in assuming the 
mesh is square.)  

 
 
 



 
Figure 2. Some examples of H-Curves. 

 
The diagram above shows three examples of H-Curves of 

different lengths on different meshes. Note that if there is a 
different number of items than grid elements—as must happen if 
there are a prime number iof leaf nodes--there may be empty 
space resulting in a little empty “notch” in the on corner; see 
Figure 5 for an example of this discretization phenomenon. 

2.5 The Jigsaw Map: A Perfect Layout Function 

 
We now define the jigsaw map and prove it is a perfect layout 

function. The idea behind a jigsaw map is to solve a trivial one-
dimensional layout problem and then map that one-dimensional 
layout into two dimensions using a screen-filling curve.  

As before, let the input sequence be given by x=(x1, x2, …, xk), 
where x1 + x2 + … + xk. = n2. We define the jigsaw layout function 
J using two other functions: a screen-filling curve satisfying c-
locality, which we call H, and a trivial “one dimensional layout 
function,” g. 

To define this second function, let mi= x1 + x2 … + xi. Thus 
m1=x1 and mk= n2. Let g be the function that maps x to the 
following sequences of subsets of {1,2, …, n2} : 

 
g(x) = ({1, 2, …, m1}, {m1+1, …, m2}, …, {mk-1+1, … mk}).  
 
Intuitively, we can think of g as a sort of “one dimensional” 

layout function that creates a perfect layout on a 1 x n2 mesh. Now 
let  

 
J(x) = H(g(x)), 
 
where the function composition is taken to mean: 
 
J(x) = ({H(1), H(2), …, H(m1)}, … , {H(mk-1), H(mk-1+1),…, 

H(mk)}). 
 
 
THEOREM 1.  
J is a perfect layout function. 
 
PROOF.  
Because of the “continuity” property of the screen-filling curve 

H, J must have the stability property and order-adjacency 
property. The c-locality property of H implies c-locality of J. It is 
easy to see that g is “split-neutral,” in the sense that splitting one 
of the xi will not affect the partitions of the others, and therefore J 
will also be split-neutral. Hence J is a perfect layout function. 

The diagram below is a schematic version of the process of 
creating a jigsaw layout. At left is a one-dimensional layout 
corresponding to the function g, at center is the same layout 
extended to a screen-filling curve, and at right is the actual space-
filling result. Note that there is one point that we have skipped 
past in the construction, and that is how to use the function J to 
layout a hierarchy of objects, rather than a flat sequence. To do so 
is simple, however: simply create a one-dimensional layout using 
a depth-first ordering of leaf nodes, and then apply H. 
 

 

 
Figure 3. Using an H-Curve to Create a Jigsaw Map. 

 
 

Figure 4. Sample Jigsaw Map Layouts. 
 

2.6 All Perfect Layout Functions are Jigsaw Maps 

Are there other perfect layouts besides the jigsaw construction 
described above? It turns out the answer is no: a converse to 
Theorem 1 holds.  

 
THEOREM 2.  
Any perfect layout function L can be written as L = H(g), where 

H is a screen-filling curve and g is the one-dimensional layout 
function defined in the previous section. If L satisfies the c-
locality property, the screen-filling curve H has the locality 
property that distance(H(i), H(j))  <  c|i-j|1/2. 

PROOF.  
Consider the input sequence S of n2 ones. That is, S = (1,1, …, 

1) with n2 entries. Then for some integers {ai},  
 
L(S)=({a1}, {a2}, … ).  
 
Now we can “read off” the function H, and define:  
 
H(i)=ai.  
 
We first show that L=H(g). This follows from split-neutrality: 

for an arbitrary input x=(x1, x2, …, xk) we may first consider a 
sequence of “splits” of the input into y=(1,1,1..1, x2, …, xk) where 
there are x1 1’s at the beginning. We may then consider a second 
set of splits of y into the all-ones vector S. By definition, L maps 
the first x1 1’s in S to the sequence A=({a1}, {a2}, …, {a x1}). By 
split-neutrality, L must also map the first x1 1’s in y to A. Finally, 
again by split-neutrality, the first element of L(x) must be  

{a1, a2,  …, a x1} = {H(1), H(2), …, H(x1)}. 
In a similar fashion one can see the same is true for each xi, and 

thus L=H(g). 



The remaining properties follow quickly. Because L is a layout 
function, h is one-to-one. By order-adjacency, H has the 
“continuity” property and is a screen-filling curve.  

Finally, to see that H has the c-locality property, consider i<j. 
Let d = j-i. Consider the input (i, d, n2-j). L will map the middle 
item onto a region of size d that contains H(i) and H(j), which by 
c-locality of L implies distance(H(i), H(j))  <  c|i-j|1/2. This 
completes the proof of the theorem. 

 
DISCUSSION. Theorem 1 and Theorem 2 give a fairly complete 

characterization of perfect layout functions, and allow us to phrase 
questions about perfect layouts (a relatively unstudied concept) in 
terms of the better-investigated area of space-filling curves. For 
example, the H-Curve is conjectured to have the best possible 
value of the locality constant c. If this conjecture is proven, it 
means that 2 is the best compactness constant for a perfect layout. 

 

3 APPLICATIONS 

3.1 An example using microarray data 

 
The preceding discussion has been abstract, and the reader may 

be wondering whether the strong properties of a perfect layout 
function are more than just a mathematical curiosity. In this 
section we describe an application that was the inspiration for the 
jigsaw map method: creating a visualization of microarray data. 

A detailed description of gene chip microarrays is beyond the 
scope of this paper, but generally speaking it is a technology for 
measuring the expression levels of many different genes under 
many different conditions. Microarray data typically takes the 
form of thousands of different vectors (one per gene) in a space 
with tens or even hundreds of dimensions (one per sample or 
experimental condition). Making sense of such data is difficult, 
but one standard technique is to organize the thousands of vectors 
using hierarchical clustering. The output of a hierarchical 
clustering is a binary tree, whose leaves correspond to particular 
vectors; such trees are usually highly unbalanced. 

Visualizations of such trees have been standard among 
biologists since [5] introduced a combination 
heatmap/dendrogram designed to create a “map” of an entire set 
of hierarchically clustered vectors. Because such diagrams attempt 
to show all the data on one screen, they quickly become unwieldy. 
It is natural to ask whether the tree structure produced by the 
clustering can be used as part of a space-filling layout to show 
expression levels of genes in one particular sample. To see how  
jigsaw maps might work in this context, we apply the technique to 
data from [6], consisting of statistics for approximately 6000 yeast 
genes. 

3.2 Treemap / Jigsaw Map Comparison 

 
It is natural to use the tree structure as an input to a treemap, 

assigning each gene a weight of one. Unfortunately, the highly 
unbalanced binary trees produced by the hierarchical clustering 
represent a sort of perfect storm for traditional treemaps. Because 
the trees are binary, the traditional means of reducing aspect 
ratios—cluster, squarified, and strip layouts—all reduce to the 
slice-and-dice layout. The top row of Figure 5 (at end of paper) 
shows a treemap version of the data from [6]. At left is the 
“skeleton” of the layout, with higher-level branches outlined in 
darker colors; at right is a heatmap version of the same tree, 
showing expression level data with a red-black-green color 
scheme. It is clear that the treemap slice-and-dice layout produces 

many high-aspect ratio rectangles. What is not visible is even 
worse: almost 10% of the rectangles are so thin that they are not 
even able to be drawn on the screen (and obviously would also be 
impossible to select with the mouse). 

By contrast, the jigsaw map is easily able to show all the data 
without any distortion of leaf nodes. The bottom row of Figure 5 
shows a jigsaw layout of the same data. The jigsaw layout allows 
every leaf node to be roughly square, and easily visible and 
selectable. In the heatmap version, the various regions with many 
genes that have been up- or down-regulated together are obvious. 

At the same time, the irregular puzzle-piece shapes certainly 
look odd, and seem likely to make it more difficult to compare 
areas and understand the tree topology than a treemap does. 
Without further testing, it is hard to evaluate the tradeoffs. At the 
very least, due to Theorem 2, the jigsaw map can be viewed as an 
upper bound for visualizations based on perfect layouts. 

4 CONCLUSION AND FUTURE DIRECTIONS 

This paper has defined the notion of a “perfect” layout function: 
a layout method for a space-filling visualization that satisfies four 
desirable criteria. We constructed an example of such a layout, the 
jigsaw map, by using the notion of a screen-filling curve. We then 
proved that any perfect layout function is actually an instance of a 
jigsaw map, thus providing a complete characterization of perfect 
layouts in terms of screen-filling curves. 

We finished by providing an example of the jigsaw map in 
action, displaying real-world data with a highly unbalanced tree 
structure derived from hierarchical agglomerative clustering. Such 
trees are common in the bioinformatics literature, and provide a 
natural application for jigsaw layouts. The example shows how 
jigsaw layouts do a significantly better job than a treemap at 
maintaining leaf nodes with decent aspect ratios. 

There are several interesting future directions suggested by this 
work. One is to further explore the mathematics of perfect layouts. 
The criteria that define a perfect layout are extremely strict, and 
relaxing the criteria may make sense in certain cases. For 
example, we have adopted the strictest possible definition of 
stability, but it could easily be made less stringent. It is also 
unclear whether perfect layouts could be characterized by a 
simpler set of criteria than the ones given above. In particular, the 
split-neutrality condition seems very strong, but it may be 
unnecessary given stability and order-adjacency. 

Another question is whether, if we look in the continuous 
domain, there is a related notion of perfect layout that allows for a 
layout function that creates convex polygons. It is likely that the 
split neutrality condition would need to be relaxed somewhat in 
this case.  

More generally, it would be good to know more about how 
various layout criteria interact. For example, suppose that we 
relax the condition that all the space on the screen be used for 
data, but instead ask require that a fixed percentage be used? What 
if we allow slight overlaps between regions? Are there then good 
layouts with extremely regular regions such as circles and 
squares? A systematic investigation of the interplay between 
criteria for space-filling layouts promises to be fruitful. 
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Figure 5. Top left: treemap skeleton layout (necessarily slice-and-dice, 

since the tree is binary. Top right: scalar data overlaid on this map. 
Bottom left: jigsaw skeleton of same tree. Bottom right: jigsaw map 
with scalar data. 

 
 
 

 
 
 

 
 


